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Abstract Recent progress in the use of Cholesky

decomposition techniques within the density fitting

approximation of two-electron integrals is reviewed with

emphasis on the theoretical background. Special attention

is paid to the fact that errors due to the density fitting

approximation can be controlled by constructing auxiliary

basis sets by means of Cholesky decomposition of either

the entire or certain subblocks of the molecular two-elec-

tron integral matrix. Finally, the prospects of trivial linear-

scaling calculation of fitting coefficients in the Cholesky

decomposition-based density fitting scheme are outlined.
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1 Introduction

Combined with the Pauli principle, the Coulomb repulsion

governs the correlated dynamics of electrons in atoms,

molecules, and bulk material, and it is thus responsible for

almost all phenomena in the everyday world. It is, however,

also responsible for grand challenges in computational

quantum chemistry [1], making the parametrization of the

exact electronic wave function or, equivalently, the density

functional of density functional theory (DFT) complicated.

In the second quantization formulation [1], the elec-

tronic Coulomb interaction is parametrized in terms of

two-electron integrals which can be structured in a matrix

with elements,

ðlmjkrÞ ¼
Z

dr1

Z
dr2vlðr1Þvmðr1Þr�1

12 vkðr2Þvrðr2Þ; ð1Þ

where the basis functions are assumed real and

r12 = |r1-r2|. (Atomic units are used throughout.) The

basic challenge is the number of integrals: with N basis

functions, there are N4/8 two-electron integrals. In quantum

chemistry, the basis set is normally composed of functions

centered at the atomic positions and contracted Gaussians

are most often chosen in order to facilitate the evaluation of

the two-electron integrals [1]. With atom-centered basis

functions, the number of two-electron integrals formally

shows quartic scaling with system size (number of atoms).

Regardless of the exact choice of basis functions, however,

the two-electron integral matrix is symmetric positive

semidefinite and the matrix elements, hence, satisfy the

inequality [2, 3]

jðlmjkrÞj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlmjlmÞðkrjkrÞ

p
: ð2Þ

For atom-centered basis functions with limited radial

extent, it then follows that the number of significant

T. B. Pedersen � R. Lindh (&)

Department of Theoretical Chemistry, Chemical Center,

University of Lund, P.O. Box 124, 221 00 Lund, Sweden

e-mail: roland.lindh@teokem.lu.se

T. B. Pedersen

e-mail: thomas.pedersen@teokem.lu.se

F. Aquilante

Department of Physical Chemistry, Sciences II,

University of Geneva, Quai E. Ansermet 30,

1211 Geneva 4, Switzerland

e-mail: francesco.aquilante@unige.ch

Present Address:
T. B. Pedersen

Center for Theoretical and Computational Chemistry,

Department of Chemistry, University of Oslo,

P.O. Box 1033, Blindern, 0315 Oslo, Norway

123

Theor Chem Acc (2009) 124:1–10

DOI 10.1007/s00214-009-0608-y



integrals should grow as the square of the number of atoms

[4]. The recently developed multipole-based integral esti-

mates by Ochsenfeld et al. [5–7] do not change the fun-

damental scaling behavior but offer significant

improvements for identifying small integrals. Note, how-

ever, that the onset of quadratic scaling depends on the

radial extent of the basis functions. As the basis set is

increased toward the basis set limit, the radial extent

increases (more diffuse basis functions) and the scaling

will then be quadratic only for very large systems.

There have been several attempts to simplify the han-

dling of two-electron integrals. The most widespread

approach is the density fitting (DF) or resolution-of-the-

identity (RI) approximation [2, 8–13] in which the product

densities |lm) are expanded in an auxiliary basis set. A

straightforward integral approximation is then given by

ðlmjkrÞ �
X
PQ

CP
lmðPjQÞC

Q
kr; ð3Þ

where P, Q are indices of the auxiliary basis set and the

expansion coefficients Clm
P are determined by least-squares

fitting. Dunlap [14–17] has convincingly argued in favor of

the robust integral representation,

ðlmjkrÞ �
X

P

ðlmjPÞCP
kr þ

X
P

CP
lmðPjkrÞ

�
X
PQ

CP
lmðPjQÞC

Q
kr;

ð4Þ

which is equivalent to Eq. 3 when certain conditions are

satisfied, as we shall discuss in more detail below. The

auxiliary basis functions are normally chosen as atom-

centered functions, and the calculation of the expansion

coefficients thus involves only three-center integrals. Thus,

the immediate advantage of the DF approach is to avoid

calculation of four-center integrals, but the scaling with

system size is cubic (albeit with a very small prefactor) due

to the matrix inversion needed to calculate the expansion

coefficients. Local DF schemes are currently being devel-

oped for linear-scaling calculation of Coulomb and

exchange contributions to the Fock matrix, see e.g. [18, 19]

and references therein, and for linear-scaling calculation of

local second-order Møller-Plesset (MP2) theory for mole-

cules [20] as well as periodic (insulating) systems [21]. The

accuracy of the DF approximation depends on the choice of

auxiliary basis set. The standard approach is to optimize an

auxiliary basis set for each atomic orbital (AO) basis set

and quantum chemical contribution, such as Coulomb [22–

24] and exchange [25, 26] contributions to the Fock matrix

(including Kohn-Sham DFT), and MP2 and second-order

coupled cluster (CC2) models [27–31].

A special case of LU factorization, Cholesky decom-

position (CD) is defined for any symmetric positive semi-

definite matrix [3, 32]. As the two-electron integral matrix

is symmetric positive semidefinite, Beebe and Linderberg

suggested the Cholesky integral representation [33–37]

ðlmjkrÞ �
XM

J¼1

LJ
lmL

J
kr; ð5Þ

which is formally exact, but the number of Cholesky

vectors M is often limited by an accuracy parameter, the

decomposition threshold. The CD works by removing lin-

ear dependence (in the Coulomb metric) among the product

densities |lm) leaving M products for a given decomposi-

tion threshold. The linear dependence increases with the

quality of the basis set, making CD a possible solution to

some of the challenges faced by conventional reduced

scaling techniques when diffuse functions are included in

the basis set [38]. Unlike DF, however, CD typically

requires calculation of four-center integrals and observed

computational savings stem from the fact that only a

fraction of the integral matrix must be calculated to gen-

erate the Cholesky representation [37]. As we will discuss

here, CD and DF are completely equivalent when a specific

auxiliary basis is chosen, opening new opportunities for

reduced scaling quantum chemistry.

Gill et al. [39, 40] have recently proposed the ‘‘resolu-

tion of the Coulomb operator’’,

r�1
12 ¼

X1
n

/nðr1Þ/nðr2Þ; ð6Þ

where the functions on the right-hand side form a complete

set, which is orthonormal in the Coulomb metric. Inserting

Eq. 6 into Eq. 1, we see that the two-electron integrals can

be expressed as sums of products of overlap integrals in a

form that resembles the Cholesky representation, Eq. 5.

The main challenge in this approach is to truncate the

infinite sum in a way that makes it computationally feasible

without sacrificing accuracy. Preliminary tests are prom-

ising [40].

We have used the Cholesky integral representation,

Eq. 5, for quadratic scaling calculation of Coulomb and

exchange Fock matrices [41], quartic scaling evaluation of

canonical scaled opposite spin MP2 [42], complete active

space self-consistent field (CASSCF) wave functions [43],

multiconfigurational second-order perturbation theory

(CASPT2) [44], and coupled cluster methods [45, 46].

These developments have had a particularly positive

impact on the size of systems that can be treated with

multiconfigurational methods, even if the limitations on the

size of the active space remain unchanged. For example,

Pierloot et al. [47] have studied relative energies of spin

states in large ferrous complexes and binding energies to

heme [48] using the CD-based CASSCF/CASPT2 imple-

mentations in the MOLCAS quantum chemistry package

[46, 49–51]. For the coupled cluster methods in MOLCAS,
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the main impact has been that larger basis sets can be

employed due to decreased disk space demands [46,

52–54].

In this article we discuss the theoretical foundation of

the CD-based development in MOLCAS. In particular, we

will focus on the properties of auxiliary basis sets for the

DF approximation generated by means of CD. As CD-

based auxiliary basis sets are constructed with no other

knowledge than the AO basis set (and molecular stoichi-

ometry and possibly geometry), we refer to this class of DF

approximations as ‘‘ab initio density fitting’’. We proceed

as follows. The DF approximation, including a brief review

of the construction of the most popular predefined auxiliary

basis sets, is described in Sect. 2 along with an analysis of

DF errors. Motivated by the DF error analysis, CD is

introduced in Sect. 3 as a procedure for generating auxil-

iary basis sets on-the-fly. In Sect. 4 we discuss the inherent

locality of CD-based fitting coefficients and its implica-

tions for local DF. Finally, concluding remarks are given in

Sect. 5.

2 Density fitting

2.1 Fundamentals of density fitting

The DF approximation is based on an expansion of product

densities in an auxiliary basis,

jlmÞ � jflmÞ ¼
X

P

CP
lmjPÞ; ð7Þ

leading to the two-electron representation of Eq. 3 by

straightforward substitution in Eq. 1. The expansion

coefficients can be determined by minimizing the norm

dlm ¼ ðDlmjDlmÞg; ð8Þ

of the fitting error

jDlmÞ ¼ jlmÞ � jflmÞ; ð9Þ

in a Hermitian positive definite metric ĝðr1; r2Þ: The

subscript g thus indicates the inner product

ðf jhÞg ¼
Z

dr1

Z
dr2 f ðr1Þĝðr1; r2Þhðr2Þ: ð10Þ

Minimization of dlm leads to the linear fitting equations

(Dlm|P)g = 0 or, equivalently,

X
Q

CQ
lmðQjPÞg ¼ ðlmjPÞg: ð11Þ

Dunlap [14–17] has pointed out that this least-squares fit-

ting procedure does not necessarily conserve the varia-

tional principle. Using the fitting equations as constraints,

however, Lagrangian multipliers can be introduced to

ensure variational integrals [19]. While the Lagrangian

multiplier terms do not contribute to the value of the

approximated integral itself, they are important for deriv-

atives [19]. As we do not discuss integral derivatives in this

work, the Lagrangian multiplier terms will not be consid-

ered any further here (they can be added in all relevant

equations without affecting the conclusions).

Auxiliary basis sets are customarily composed of atom-

centered functions. It is then clear from Eqs. 3 and 11 that

at most three-center integrals need to be evaluated. In fact,

a major computational advantage of the DF approximation

is that expensive four-center integrals are eliminated. This

elimination is not free, however, as the matrix inversion

required to solve the DF equations (11) shows a formal

cubic scaling with system size. Fortunately, the prefactor is

small and large computational savings (often an order of

magnitude or more) are observed for molecules of up to

about a few hundred atoms. For larger systems, linear

scaling techniques based on local fitting must be employed,

see e.g. [18, 19, 55].

2.2 Predefined auxiliary basis sets

Successful application of the DF approximation clearly

depends on the choice of auxiliary basis set. For Gaussian

one-electron basis sets it is natural to use Gaussians also for

the auxiliary basis set. Auxiliary basis function parameters

(exponents, contraction patterns, and contraction coeffi-

cients) must be chosen such that the DF approximation

becomes both accurate and efficient. The most commonly

used Gaussian auxiliary basis sets seem to be those origi-

nating from Ahlrichs’ quantum chemistry group in Kar-

slruhe, who defined the balance between accuracy and

efficiency as [22–30]

1. The error due to the DF approximation must be at least

one order of magnitude smaller than the error arising

from one-electron basis set incompleteness, and

2. The number of auxiliary basis functions must be a few

(approximately 2–4) times larger than the number of

AO basis functions.

In order to strike this balance, auxiliary basis sets are

generally optimized for each quantum chemical model (to

satisfy requirement 1) and each atom and AO basis set (to

satisfy requirement 2).

Using ground state energies to quantify ‘‘the error due to

the DF approximation’’, auxiliary basis sets for non-hybrid

DFT with the split-valence SVP [56] and triple-f TZVP

[57] one-electron basis sets were published by Eichkorn

et al. [22, 23]. Test calculations on a number of chemical

compounds have revealed that these so-called RI–J auxil-

iary basis sets may also be used in conjunction with other

(smaller as well as larger) one-electron basis sets than SVP
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and TZVP [58]. The RI–J auxiliary basis sets have recently

been improved by Weigend [24] who developed auxiliary

basis sets for all atoms from hydrogen to radon. The

improved sets are universal in the sense that they are suf-

ficiently flexible to be used for non-hybrid DFT with all

one-electron basis sets from split-valence to quadruple-f
quality. For heavier elements these sets are intended for use

with effective core potentials only [24] and lanthanides and

actinides are not supported.

Weigend has also developed the RI–JK auxiliary basis

sets for HF and hybrid DFT methods [25, 26]. The RI–JK

sets are constructed to minimize the error in both Coulomb

and exchange ground state energies due to the DF

approximation. At the same time, the resulting MOs and

MO energies are sufficiently accurate to allow MP2 cal-

culations with the DF–HF wave function as 0th order

approximation.

Separate auxiliary basis sets are needed for the corre-

lated calculation, however, and the RI–C auxiliary basis

sets have been constructed for a large number of one-

electron basis sets [27–31]. The RI–C sets are constructed

to minimize the error in MP2 ground state energies

(although only the quadratic part of the error function is

used for minimization), but they have also been used for

CC2 calculations of excitation energies [59] and for local

coupled cluster calculations [60].

The RI–X (X = J, JK, C) sets are optimized at atomic

(or atomic ion) calculations with a few exceptions, where

diatomic hydrides are used. The accuracy is subsequently

evaluated using molecular test sets covering the majority of

atoms in their most common oxidation states, leading to

statistical knowledge of the typical ground state energy

error per atom (see, e.g., [24, 26]).

2.3 Density fitting error analysis

When approximating the two-electron integrals it is

important to realize that one is ultimately modifying the

Hamiltonian operator and, hence, its eigenstates and

eigenvalues. All molecular properties amenable to theo-

retical computation are thus affected by the integral

approximation, not just ground state energies. The most

general way to measure the error due to the DF approxi-

mation, therefore, is to study the integral representation

error.

The error of the DF integral representation, Eq. 3, is

given by

Dlm;kr ¼ ðlmjkrÞ � ðflmjfkrÞ
¼ ðDlmjDkrÞ þ ðDlmjfkrÞ þ ðflmjDkrÞ;

ð12Þ

which, of course, vanishes when |Dlm) = 0 for all lm. This

requires that the auxiliary basis spans the same space as the

original product densities. Applying Eq. 2 to each of the

three terms in Eq. 12 we obtain an upper bound to the

absolute error,

Dlm;kr

�� ���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDlmjDlmÞðDkrjDkrÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDlmjDlmÞðfkrjfkrÞ

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðflmjflmÞðDkrjDkrÞ

q
; ð13Þ

indicating that the most accurate fit for a given auxiliary

basis is obtained by minimizing the self-energy of the

fitting error, (Dlm |Dlm), for all lm. From Eq. 8 we thus find

that minimum integral representation error is ensured by

choosing the Coulomb metric, ĝðr1; r2Þ ¼ r�1
12 , as has also

been firmly established numerically [13, 19, 61]. If, in

addition to using the Coulomb metric, all product densities

are expanded in the same set of auxiliary functions, it

follows from Eq. 11 that ðDlmjfkrÞ ¼ 0 and the integral

representation error becomes quadratic in the fitting error

|Dlm):

Dlm;kr

�� �� ¼ ðDlmjDkrÞ
�� ��� ffiffiffiffiffiffiffiffiffiffiffiffiffi

dlmdkr

p
: ð14Þ

The actual value of dlm depends, of course, on the details of

the auxiliary basis set. Examples of the variation of dlm

with different auxiliary basis sets are given in [62] and

[63].

If a non-Coulomb metric is used or if the product den-

sities are not expanded in the same set of auxiliary func-

tions (e.g., using local fitting domains), ðDlmjfkrÞ 6¼ 0 and

the integral representation error becomes linear in the fit-

ting error |Dlm) according to Eq. 12 with the upper bound of

Eq. 13. If, instead of Eq. 3, we use the robust integral

representation advocated by Dunlap [14–17],

ðlmjkrÞ � ðflmjfkrÞ þ ðDlmjfkrÞ þ ðflmjDkrÞ
¼ ðlmjfkrÞ þ ðflmjkrÞ � ðflmjfkrÞ;

ð15Þ

the representation error becomes quadratic in the fitting

error |Dkr), as is easily seen by rearranging Eq. 12. As the

self-energy (Dlm|Dlm) is not directly minimized when a non-

Coulomb metric is used, the integral representation error

may be larger than that obtained using the Coulomb metric.

3 Auxiliary basis sets from Cholesky decompositions

As is evident from the analysis of Sect. 2.3, the accuracy of

the DF approximation depends on the ability of the auxil-

iary basis to span the same space as the product densities

|lm). Observing that the product densities become more and

more linearly dependent as the one-electron basis set

approaches the basis set limit, an auxiliary basis spanning

the same space can be generated by simply removing lin-

early dependent products. Cholesky decomposition of the

4 Theor Chem Acc (2009) 124:1–10
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two-electron integral matrix offers a numerically stable

procedure to do just that.

3.1 The Cholesky basis

The accuracy of the Cholesky integral representation,

Eq. 5, is measured by means of the residual matrix,

D
ðJÞ
lm;kr ¼ ðlmjkrÞ �

XJ

K¼1

LK
lmL

K
kr; ð16Þ

such that

ðlmjkrÞ ¼
XM

J¼1

LJ
lmL

J
kr þ D

ðMÞ
lm;kr: ð17Þ

Being a positive semidefinite matrix [33], the residual

satisfies an inequality analogous to Eq. 2,

D
ðJÞ
lm;kr

���
����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D
ðJÞ
lm;lmD

ðJÞ
kr;kr

q
; ð18Þ

and, consequently, the accuracy of the Cholesky

representation of the two-electron integrals can be

controlled by requiring

max
lm

DðMÞlm;lm

� �
� d; ð19Þ

where the decomposition threshold is a non-negative real

number, d C 0. All integrals are thus reproduced with an

accuracy of at least d, and the Cholesky representation can

be employed in conjunction with any quantum chemical

method and becomes exact when d = 0, as all integrals are

represented exactly in this case. The choice d = 10-4

roughly corresponds to the accuracy obtained using DF

with predefined auxiliary basis sets [64].

The CD is a recursive procedure in which the Cholesky

vector at recursion J is calculated from the residual matrix

of recursion J-1 according to [33, 37, 46]

LJ
lm ¼ D

ðJ�1Þ
½kr�J ;½kr�J

h i�1=2

D
ðJ�1Þ
lm;½kr�J

: ð20Þ

Here, [kr]J is the index of the largest residual diagonal

element at the (J-1)th recursion, i.e., the product density

that gives rise to the Jth vector. The stop criterion is given

by Eq. 19, i.e., the recursion stops when the largest residual

diagonal element is smaller than or equal to d, thus

determining the total number of Cholesky vectors M. The

CD, thus, identifies a linearly independent subset {|hJ)}

= {|[kr]J)} of the product density set {|lm)}. We refer to

this subset as the Cholesky basis.

Exploiting Eq. 18 for prescreening at each recursion, a

general integral-direct implementation of CD was pre-

sented by Koch et al. [37]. A slightly modified algorithm

has been implemented in the MOLCAS program as

described in [46], and Røeggen and Johansen [65] have

recently presented a parallel implementation based on

family-type basis sets. Only a fraction of the integral

matrix (M columns) needs to be computed in the recursive

procedure to represent the integrals with finite accuracy.

The bottleneck of the integral-direct algorithm is in most

cases the calculation of the residual matrix, Eq. 16. As only

M columns of the residual matrix are needed to generate

the Cholesky vectors, Eq. 16 shows a formal complexity of

NdM2, where Nd is the number of significant product den-

sities as determined from Eq. 2. Increasing accuracy by

decreasing the decomposition threshold is, thus, accom-

panied by a computational penalty scaling quadratically

with the increase in the number of Cholesky vectors.

Typically, M is 3–10 times the number of one-electron

basis functions.

The significance of the Cholesky basis can be clarified

by Gram-Schmidt orthonormalization in the Coulomb

metric, i.e.

jQJÞ ¼ N�1=2
J jhJÞ �

XJ�1

K¼1

jQKÞðQK jhJÞ
" #

; ð21Þ

where the normalization constant is given by

N J ¼ ðhJ jhJÞ �
XJ�1

K¼1

ðhJ jQKÞ2; ð22Þ

such that (QJ|QK) = dJK. Noting that

ðlmjQ1Þ ¼ ðh1jh1Þ�1=2ðlmjh1Þ
¼ L1

lm;
ð23Þ

it is easy to verify by recursion that the components of the

orthonormalized functions in the original product basis are

equal to the corresponding Cholesky vector components.

That is,

ðlmjQJÞ ¼ LJ
lm; ð24Þ

and CD is, therefore, equivalent to a Gram-Schmidt

orthonormalization of the product density set {|lm)} in

the Coulomb metric. As the normalization constant, Eq.

22, is simply a diagonal element of the residual matrix,

Eq. 16, the Cholesky threshold clearly plays the role of

tolerance for linear dependence. The Cholesky

representation of the two-electron integrals can now be

written as

ðlmjkrÞ �
XM

J¼1

ðlmjQJÞðQJ jkrÞ; ð25Þ

which is equivalent to the inner projection formulation of

Beebe and Linderberg [33] using an orthonormal basis.

Theor Chem Acc (2009) 124:1–10 5
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Using the orthonormalized Cholesky basis as auxiliary

basis for the DF approximation, the solution of the fitting

equations (11) with the Coulomb metric becomes

CJ
lm ¼ LJ

lm; ð26Þ

by virtue of Eq. 24. The CD and DF approaches are,

therefore, entirely equivalent when the Cholesky basis is

used as auxiliary basis. Employing the nonorthonormal

Cholesky basis, we may rewrite the Cholesky

representation of the integrals in the DF form

ðlmjkrÞ ¼
X
JK

CJ
lmðhJ jhKÞCK

kr þ Dlm;kr; ð27Þ

where

jDlm;krj � d; ð28Þ

is inherited from the CD procedure. The fitting coefficients

in the nonorthonormal Cholesky basis are related to the

Cholesky vectors according to

X
K

CK
lmL

J
K ¼ LJ

lm: ð29Þ

While the Cholesky basis is formally exact (when

d = 0), it generally contains both one- and two-center

functions. Both the fitting Eqs. 11 and 27, therefore,

contain some four-center integrals and a major

computational advantage of DF is partially lost. It is,

therefore, important to explore approximate Cholesky

bases containing one-center functions only.

The Cholesky basis depends in a nontrivial way on

molecular geometry. Besides the explicit dependence on

atomic positions of the Cholesky basis product functions,

molecular geometry dictates which product functions are

selected by the CD procedure to enter the Cholesky basis.

Although one might expect this feature to give rise to

discontinuities in potential energy surfaces, numerical tests

have not revealed such issues [66].

3.2 One-center Cholesky decomposition

The one-center CD (1C-CD) approximation [62] is a

straightforward way to avoid two-center functions: simply

deny two-center functions entry into the Cholesky basis

during the recursive procedure defined by Eq. 20. The

recursion stops when the largest one-center diagonal

residual element is below d regardless of the size of the

two-center diagonal residual elements. While one-center

fitting errors are bounded by the decomposition threshold,

dlAmA
� d, the two-center errors dlAmB

are not bounded but

rather minimized to the extent that they can be expanded in

the one-center Cholesky basis. Consequently, only one-

and two-center integrals of the types (lAmA|kArA) and

(lAmA|kBrB) are represented with an accuracy of at least d

according to Eq. 14. The errors in the remaining integrals

approach a constant value as the decomposition threshold

is reduced, but they will not generally vanish in the limit

d?0.

Like the full Cholesky basis, the 1C-CD basis depends

on geometry, although this does not seem to lead to dis-

continuity issues in practice [66]. In fact, we have utilized

Eq. 27 in conjunction with the 1C-CD approximation to

implement analytic gradients and shown that the accuracy

of bond lengths and angles can be controlled by adjusting

the decomposition threshold [66].

3.3 Atomic Cholesky decomposition

The geometry-dependence of the 1C-CD basis can easily

be removed by generating a Cholesky basis for each atom.

This idea is closely related to Ten-no and Iwata’s [67, 68]

RI with linear combination of atomic electron distributions

(RI-LCAD) method, in which the atomic integral matrix is

diagonalized and the eigenfunctions corresponding to

eigenvalues above a given threshold are used as auxiliary

basis functions. In the atomic CD (aCD) approach [62]

each unique atomic block, (lAmA|kArA), of the integral

matrix is decomposed to give an atomic Cholesky basis,

which contains exactly those product densities that are

linearly independent within the decomposition threshold.

The atomic Cholesky basis, therefore, does not necessarily

contain all angular components and the aCD auxiliary basis

set is obtained by completing the shell structure [62, 63]

(i.e., by adding ‘‘missing’’ angular components). Con-

structed as products of AOs, the aCD set may contain an

exceedingly large number of primitive Gaussian functions,

making the calculation of two- and three-center integrals

expensive. In order to reduce the number of primitives, we

have developed the atomic compact CD (acCD) auxiliary

basis set [63]. The acCD set is obtained from the aCD by

decomposing an ‘‘angular free’’ two-electron integral

matrix to remove linear dependence among the primitive

Gaussians, followed by a fit of the contraction coefficients,

as described in more detail in [63]. Extensive tests have

shown that the differences between total energies calcu-

lated with the aCD and acCD sets are one to two orders of

magnitude smaller than the error relative to conventional

calculations [63, 64].

In principle, the aCD and acCD sets can be generated

once for each atom in the periodic table (and each one-

electron basis set and decomposition threshold) and the

results stored in an auxiliary basis set library. This

approach is not worthwhile, however, as the computational

overhead of generating the aCD sets on-the-fly is minute.

In addition, the atomic natural orbital (ANO) basis sets of

Widmark et al. [69, 70] allow tailoring of the contraction

scheme to the problem at hand. An aCD and acCD set for
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each possible contraction scheme would therefore have to

be stored in the auxiliary basis set library, making the on-

the-fly approach preferable.

As for 1C-CD, only one- and two-center integrals of the

types (lAmA|kArA) and (lAmA|kBrB) are represented with an

accuracy of at least d with the aCD and acCD sets

according to Eq. 14.

4 Local density fitting

The cubic scaling with system size of the DF approach

is due to the expansion of all product densities in the full

set of auxiliary functions according to Eq. 7. The

dimension of the fitting equations (11) thus grows qua-

dratically with system size. Two approaches have been

used to tackle this problem. In partitioning schemes [55,

71–74], the expansion is limited to auxiliary functions in

the vicinity of the product density. The dimension of the

fitting equations for a given product density, thus,

becomes independent of system size. This can also be

achieved by exploiting the sparsity of the (Q|P)g and

(lm|P)g matrices arising through the use of a local metric

g [19, 61]. The drawback of both types of approaches is

that the accuracy is reduced compared to full expansions

with the Coulomb metric.

As discussed in Sect. 2.3, Dunlap’s robust integral rep-

resentation ensures that the error becomes quadratic in the

fitting error and thus bounded from above according to

DlAmB;kCrD

�� �� ¼ ðDlAmB
jDkCrD

Þ
�� ��

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDlAmB

jDlAmB
ÞðDkCrD

jDkCrD
Þ

q
;

ð30Þ

regardless of the chosen partitioning and metric. Evidently,

one should use the Coulomb metric in order to obtain the

smallest possible error. The question then becomes if all

auxiliary functions are needed to accurately represent a

given product density.

The partitioning scheme employed for charge densities

by Fonseca Guerra et al. [72] is defined such that only

auxiliary functions on A and B are used for expanding the

product densities |lAmB). This approach is justified by the

intuitively reasonable statement that if the auxiliary basis

functions on centers A and B are sufficiently flexible for

calculations on the diatomic molecule AB, they should be

sufficient for expanding |lAmB) in polyatomic molecules as

well. By the same token, the accuracy of the expansion

becomes independent of chemical environment, i.e., the

fitting error for a given product density becomes transfer-

able from one system to another.

In this approach, product densities are expanded

according to

jglAmBÞ ¼
X
PAB

CPAB
lAmB
jPABÞ; ð31Þ

where PAB denotes auxiliary functions on atoms A and B (A

C B). Defining a Cholesky basis for each interacting atom

pair by decomposing the corresponding diagonal block

(lAmB|kArB) of the integral matrix, we have

ðDlAmB
jDlAmB

Þ� d; ð32Þ

and hence from Eq. 30,

DlAmB;kCrD

�� ��� d: ð33Þ

Combining the partitioning scheme of Fonseca Guerra

et al. [72] with the concept of the Cholesky basis, we thus

obtain a local DF (LDF) approach with complete error

control through the decomposition threshold and linear-

scaling calculation of fitting coefficients with the Coulomb

metric.

One drawback is that once the fitting coefficients have

been calculated, evaluation of integrals according to Eq. 15

requires calculation of four-center integrals. This can be

avoided by using the aCD or acCD classes of auxiliary

basis sets such that

jglAmAÞ ¼
X
PA

CPA
lAmA
jPAÞ; ð34Þ

jglAmBÞ ¼
X

X¼A;B

X
PX

CPX
lAmB
jPXÞ: ð35Þ

Note, however, that we are trading accuracy for efficiency

since Eq. 32 now only holds for A = B.

The aCD sets are tailored for accurate fitting of one-

center product densities. It is therefore reasonable to expect

that even if a given one-center product density is expanded

in the full aCD set of functions, there will be only signif-

icant contributions from auxiliary functions on the same

center. This is indeed what we observed in recent numer-

ical tests [63]. The ‘‘inherent’’ locality depends, of course,

on the decomposition threshold defining the aCD set, but

locality is achieved even with the Coulomb metric [63].

For low enough threshold, therefore, Eq. 34 is practically

equivalent to the full expansion. Moreover, the prescreen-

ing techniques used, e.g., by Reine et al. [19] would pro-

duce the local expansion of Eq. 34.

For two-center product densities, on the other hand, the

aCD sets cannot be expected to be inherently local. To

demonstrate this, we have performed a series of calcula-

tions on the N2—benzene van der Waals complex using a

development version of MOLCAS [46, 49–51] and the AO

basis set ANO-RCC-VTZP of Roos et al. [75]. Fitting

coefficients for the two-center product densities on the

nitrogen atoms are calculated for full expansions in the

aCD-n, n = -logd = 4,6,8,10,12, series of auxiliary basis

sets. In Fig. 1 we have plotted the largest ‘‘contaminant’’,
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i.e. fitting coefficient corresponding to auxiliary functions

centered on the benzene ring, as a function of the distance

between the centers of mass of N2 and benzene. The N2

molecule is oriented parallel to an axis through two

opposite carbon atoms of the benzene ring. The slow decay

behavior of the contaminant is in agreement with the

results of Jung et al. [61] and confirms that the two-center

fitting coefficients obtained with the aCD-n sets are not

inherently local. In contrast to the behavior observed for

one-center product densities [63], we find that lowering the

decomposition threshold does not improve locality. It

should be noted, however, that this does not imply that the

local ansatz of Eq. 35 is too inaccurate to be useful. It does

show that accuracy will improve if the fitting domain is

enlarged, although there is no obvious way to choose the

domain size by means of a distance cut-off. In cases where

it is needed, control of the error in integrals involving two-

center product densities can be regained by augmenting the

atom-centered auxiliary basis functions with two-center

functions obtained by decomposing the corresponding

diagonal block of the residual matrix. This will lead to

fewer two-center auxiliary functions, and hence fewer four-

center integrals, than the ‘‘brute-force’’ Cholesky basis

used in Eq. 31. Only practical experience can tell if this

augmentation is necessary. Work along these lines is cur-

rently in progress and our results will be reported in the

near future.

5 Concluding remarks

We have reviewed the theoretical foundation for using CD

as a generator of auxiliary basis sets for the DF approxi-

mation of two-electron integrals. Starting from an explicit

demonstration of the equivalence of CD and DF when the

Cholesky basis is used as auxiliary basis set, we have

reviewed three types of CD-based techniques: 1C-CD is

based on the molecular integral matrix, while aCD and

acCD are based on the atomic integral matrix. The main

features of these CD-based approaches can be summarized

as:

• Full CD

• Decomposition of the molecular integral matrix.

• Cholesky vectors are computed according to

Eq. 20.

• Subsequent calculations may use either the CD

form, Eq. 5, or the DF form, Eq. 3, with fitting

coefficients determined by Eq. 29.

• All integrals are represented with an accuracy of at

least d.

• Depends on molecular geometry.

• 1C-CD

• Decomposition of the molecular integral matrix.

• Cholesky vectors are computed according to

Eq. 20.

• Only residual diagonal elements corresponding to

one-center product densities are allowed to produce

Cholesky vectors.

• Subsequent calculations may use either the CD

form, Eq. 5, or the DF form, Eq. 3, with fitting

coefficients determined by Eq. 29.

• Integrals that solely involve one-center product

densities are represented with an accuracy of at least

d. All other integrals may have larger errors.

• Depends on molecular geometry.

• aCD

• Decomposition of the atomic integral matrix pro-

duces a Cholesky basis for each unique atom and

AO basis set.

• The aCD auxiliary basis set is obtained by adding

missing angular components to the Cholesky basis.

• Subsequent calculations use the DF form, Eq. 3,

with fitting coefficients determined by Eq. 11.

• Integrals that solely involve one-center product

densities are represented with an accuracy of at least

d. All other integrals may have larger errors.

• Independent of molecular geometry.

• acCD

• The acCD auxiliary basis set is obtained from the

aCD set by removing linear dependence in the

primitive product space (by means of CD).

• Subsequent calculations use the DF form, Eq. 3,

with fitting coefficients determined by Eq. 11.

Fig. 1 Contaminants in fitting two-center product densities on the

nitrogen atoms of the N2—benzene van der Waals complex as a

function of the distance (in Å) between the centers of mass of the

moieties
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• Integrals that solely involve one-center product

densities are represented with an accuracy of

approximately d or better. All other integrals may

have larger errors.

• Independent of molecular geometry.

In practice, full CD and 1C-CD have been implemented

using Eq. 5 in place of the integrals, whereas aCD and

acCD have been implemented using Eq. 3 in a form that

resembles the CD expression. The details of our imple-

mentation in the MOLCAS software can be found in [46]

and references therein.

Using CD to generate auxiliary basis sets for the DF

approach offers a number of advantages, including:

• automatic generation of the auxiliary basis set,

• control of the error in individual two-electron integrals,

and

• inherent locality.

The DF approach is first and foremost a technique for

speeding up quantum chemical calculations. From the

viewpoint of a user of quantum chemical software, it is

clearly advantageous to have the auxiliary basis set gen-

erated automatically with as little user input as possible.

The only input needed to generate CD-based auxiliary

basis sets is the decomposition threshold for which a

suitable default value can be established on the basis of

benchmark calculations [46].

The specific type of Cholesky decomposition (full CD,

1C-CD, aCD, and acCD) along with the decomposition

threshold control the maximum error in individual two-

electron integrals. This means that the error of the Ham-

iltonian operator is controllable and that the CD-based

auxiliary basis sets are unbiased in the sense that they can

be used in conjunction with any quantum chemical method

and any AO basis set for the calculation of ground and

excited states [37, 38, 41–44, 46, 63, 64, 66, 76] as well as

static and frequency-dependent electromagnetic properties

[45, 77]. The error in computed quantities, such as total

energies become controllable through the decomposition

threshold [64].

The unbiased nature and controllable error of the CD-

based auxiliary basis sets are also the source of the main

disadvantage, namely that they are more computationally

demanding than predefined auxiliary basis set [64, 78]. We

find that this is a reasonable price to pay for an integral

representation with uniform error and inherent locality. It

should be stressed, however, that method-specific CD has

recently been proposed as a procedure for generating com-

pact auxiliary basis sets tailored for calculating individual

contributions, such as Coulomb and exchange terms [38].

The inherent locality of CD-based auxiliary basis sets is

perhaps the greatest advantage, as it allows trivial linear-

scaling calculation of the fitting coefficients. While main-

taining complete error control, linear-scaling calculation of

the inactive and active Fock matrices needed for multi-

configurational wave functions become possible. This

paves the way for truly large-scale applications of multi-

configurational methods, making it possible to address

chemical problems without having to resort to small model

systems. It must be added, of course, that the CD-based

techniques do not affect the current limitations on the size

of the active orbital space. This emerging technology is,

therefore, mostly aimed at systems, such as transition metal

complexes with large ligands, where only a small active

space (orbitals around the central transition metal atom) is

needed. Our progress in this direction will be reported in

the near future.
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